Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.23.424232

ABSTRACT

A key element to the prevention and management of the COVID-19 pandemic is the development of effective therapeutics. Drug combination strategies of repurposed drugs offer a number of advantages to monotherapies including the potential to achieve greater efficacy, the potential to increase the therapeutic index of drugs and the potential to reduce the emergence of drug resistance. Combination of agents with antiviral mechanisms of action with immune-modulatory or anti-inflammatory drug is also worthy of investigation. Here, we report on the in vitro synergistic interaction between two FDA approved drugs, remdesivir (RDV) and ivermectin (IVM) resulting in enhanced antiviral activity against SARS-CoV-2, the causative pathogen of COVID-19. These findings warrant further investigations into the clinical potential of this combination, together with studies to define the underlying mechanism.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.21.20248121

ABSTRACT

Background Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, there has been increasing demand to identify predictors of severe clinical course in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human leukocyte antigen alleles (HLA) have been suggested as potential genetic host factors. We sought to evaluate this hypothesis by conducting an international multicenter study using HLA sequencing with subsequent independent validation. Methods We analyzed a total of 332 samples. First, we enrolled 233 patients in Germany, Spain, and Switzerland for HLA and whole exome sequencing. Furthermore, we validated our results in a public data set (United States, n=99). Patients older than 18 years presenting with COVID-19 were included, representing the full spectrum of the disease. HLA candidate alleles were identified in the derivation cohort (n=92) and tested in two independent validation cohorts (n=240). Results We identified HLA-C* 04:01 as a novel genetic predictor for severe clinical course in COVID-19. Carriers of HLA-C* 04:01 had twice the risk of intubation when infected with SARS-CoV-2 (hazard ratio 2.1, adjusted p-value=0.0036). Importantly, these findings were successfully replicated in an independent data set. Furthermore, our findings are biologically plausible, as HLA-C* 04:01 has fewer predicted bindings sites with relevant SARS-CoV-2 peptides as compared to other HLA alleles. Exome sequencing confirmed findings from HLA analysis. Conclusions HLA-C* 04:01 carriage is associated with a twofold increased risk of intubation in patients infected with SARS-CoV-2. Testing for HLA-C* 04:01 could have clinical implications to identify high-risk patients and individualize management.


Subject(s)
COVID-19 , Coronavirus Infections
SELECTION OF CITATIONS
SEARCH DETAIL